# Hychem PF3 Hardener Hychem International

Chemwatch: **18-9420** 

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

#### Chemwatch Hazard Alert Code: 3

Issue Date: 23/12/2022 Print Date: 09/03/2023 L.GHS.AUS.EN

#### SECTION 1 Identification of the substance / mixture and of the company / undertaking

#### **Product Identifier**

Version No: 6.1

| Product name                  | Hychem PF3 Hardener                                                                                                                                  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical Name                 | Not Applicable                                                                                                                                       |
| Synonyms                      | Not Available                                                                                                                                        |
| Proper shipping name          | AMINES, LIQUID, CORROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S. (contains isophorone diamine, tetraethylenepentamine and m-xylenediamine) |
| Chemical formula              | Not Applicable                                                                                                                                       |
| Other means of identification | Not Available                                                                                                                                        |

#### Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Epoxy curing agent

#### Details of the manufacturer or supplier of the safety data sheet

| Registered company name | Hychem International                                      |
|-------------------------|-----------------------------------------------------------|
| Address                 | Unit 1, 30 Bluett Drive Smeaton Grange NSW 2567 Australia |
| Telephone               | +61 2 4646 1660                                           |
| Fax                     | +61 2 4647 3700                                           |
| Website                 | Not Available                                             |
| Email                   | Not Available                                             |

#### **Emergency telephone number**

| Association / Organisation        | CHEMWATCH EMERGENCY RESPONSE (24/7) |
|-----------------------------------|-------------------------------------|
| Emergency telephone numbers       | +61 1800 951 288                    |
| Other emergency telephone numbers | +61 3 9573 3188                     |

Once connected and if the message is not in your preferred language then please dial 01

#### **SECTION 2 Hazards identification**

#### Classification of the substance or mixture

| Poisons Schedule   | S5                                                                                                                                                                                                                                                              |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Classification [1] | Corrosive to Metals Category 1, Skin Corrosion/Irritation Category 1A, Serious Eye Damage/Eye Irritation Category 1, Sensitisation (Respiratory) Category 1, Reproductive Toxicity Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 2 |
| Legend:            | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 -<br>Annex VI                                                                                                                          |

#### Label elements

Hazard pictogram(s)







Issue Date: 23/12/2022 Print Date: 09/03/2023

| Signal  | word | Danger |
|---------|------|--------|
| Oigilai | word | Dunger |

#### Hazard statement(s)

| H290  | May be corrosive to metals.                                                |
|-------|----------------------------------------------------------------------------|
| H314  | Causes severe skin burns and eye damage.                                   |
| H334  | May cause allergy or asthma symptoms or breathing difficulties if inhaled. |
| H361f | Suspected of damaging fertility.                                           |
| H411  | Toxic to aquatic life with long lasting effects.                           |

#### Precautionary statement(s) Prevention

| P201 | Obtain special instructions before use.                                          |
|------|----------------------------------------------------------------------------------|
| P260 | Do not breathe mist/vapours/spray.                                               |
| P264 | Wash all exposed external body areas thoroughly after handling.                  |
| P280 | Wear protective gloves, protective clothing, eye protection and face protection. |
| P284 | [In case of inadequate ventilation] wear respiratory protection.                 |
| P234 | Keep only in original packaging.                                                 |
| P273 | Avoid release to the environment.                                                |

#### Precautionary statement(s) Response

| P301+P330+P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.                                                                               |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].                         |  |
| P304+P340      | IF INHALED: Remove person to fresh air and keep comfortable for breathing.                                                       |  |
| P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |  |
| P308+P313      | IF exposed or concerned: Get medical advice/ attention.                                                                          |  |
| P310           | Immediately call a POISON CENTER/doctor/physician/first aider.                                                                   |  |
| P342+P311      | If experiencing respiratory symptoms: Call a POISON CENTER/doctor/physician/first aider.                                         |  |
| P363           | Wash contaminated clothing before reuse.                                                                                         |  |
| P390           | Absorb spillage to prevent material damage.                                                                                      |  |
| P391           | Collect spillage.                                                                                                                |  |

#### Precautionary statement(s) Storage

| P405 | Store locked up. |
|------|------------------|
|      | otoro romos up   |

#### Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

#### **SECTION 3 Composition / information on ingredients**

#### Substances

See section below for composition of Mixtures

#### **Mixtures**

| CAS No        | %[weight] | Name                                                                                                                              |
|---------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------|
| 98-54-4       | <10       | p-tert-butylphenol                                                                                                                |
| 1477-55-0     | <10       | m-xylenediamine                                                                                                                   |
| Not Available | <10       | <u>tetraethylenepentamine</u>                                                                                                     |
| 2855-13-2     | <10       | isophorone diamine                                                                                                                |
| Not Available | >60       | ingredients determined not to be hazardous                                                                                        |
| Legend:       | •         | 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - awn from C&L * EU IOELVs available |

Page 3 of 18

Hychem PF3 Hardener

Issue Date: 23/12/2022 Print Date: 09/03/2023

#### **Description of first aid measures**

| Eye Contact  | <ul> <li>If this product comes in contact with the eyes:</li> <li>Immediately hold eyelids apart and flush the eye continuously with running water.</li> <li>Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.</li> <li>Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.</li> <li>Transport to hospital or doctor without delay.</li> <li>Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Skin Contact | If skin or hair contact occurs:  Immediately flush body and clothes with large amounts of water, using safety shower if available.  Quickly remove all contaminated clothing, including footwear.  Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre.  Transport to hospital, or doctor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Inhalation   | <ul> <li>If fumes or combustion products are inhaled remove from contaminated area.</li> <li>Lay patient down. Keep warm and rested.</li> <li>Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.</li> <li>Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.</li> <li>Transport to hospital, or doctor.</li> <li>Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema.</li> <li>Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs).</li> <li>As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested.</li> <li>Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered.</li> <li>This must definitely be left to a doctor or person authorised by him/her.</li> <li>(ICSC13719)</li> </ul> |
| Ingestion    | <ul> <li>For advice, contact a Poisons Information Centre or a doctor at once.</li> <li>Urgent hospital treatment is likely to be needed.</li> <li>If swallowed do NOT induce vomiting.</li> <li>If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.</li> <li>Observe the patient carefully.</li> <li>Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.</li> <li>Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.</li> <li>Transport to hospital or doctor without delay.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

#### **SECTION 5 Firefighting measures**

#### **Extinguishing media**

- ▶ Foam.
- ▶ Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

#### Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

#### Advice for firefighters

Alert Fire Brigade and tell them location and nature of hazard.

Wear full body protective clothing with breathing apparatus.

▶ Prevent, by any means available, spillage from entering drains or water course.

▶ Use fire fighting procedures suitable for surrounding area. Fire Fighting

- ▶ Do not approach containers suspected to be hot
- ▶ Cool fire exposed containers with water spray from a protected location.
- ▶ If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

#### Continued...

Chemwatch: 18-9420 Page 4 of 18 Issue Date: 23/12/2022 Version No: 6.1 Print Date: 09/03/2023 **Hychem PF3 Hardener** 

#### ▶ Non combustible. ▶ Not considered a significant fire risk, however containers may burn. Combustion products include: carbon monoxide (CO) Fire/Explosion Hazard carbon dioxide (CO2) nitrogen oxides (NOx) other pyrolysis products typical of burning organic material. May emit poisonous fumes. **HAZCHEM** 2X

#### **SECTION 6 Accidental release measures**

#### Personal precautions, protective equipment and emergency procedures

See section 8

#### **Environmental precautions**

See section 12

| Minor Spills | <ul> <li>Clean up all spills immediately.</li> <li>Avoid breathing vapours/ aerosols/ or dusts and avoid contact with skin and eyes.</li> <li>Control personal contact with the substance, by using protective equipment.</li> <li>Contain and absorb spill with sand, earth, inert material or vermiculite.</li> <li>Place in a suitable, labelled container for waste disposal.</li> <li>Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.</li> <li>Check regularly for spills and leaks.</li> </ul>                                                                                                                                                                                                                                                                                                                                                              |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Major Spills | <ul> <li>Clear area of personnel and move upwind.</li> <li>Alert Fire Brigade and tell them location and nature of hazard.</li> <li>Wear full body protective clothing with breathing apparatus.</li> <li>Prevent, by any means available, spillage from entering drains or water course.</li> <li>Consider evacuation (or protect in place).</li> <li>Stop leak if safe to do so.</li> <li>Contain spill with sand, earth or vermiculite.</li> <li>Collect recoverable product into labelled containers for recycling.</li> <li>Neutralise/decontaminate residue (see Section 13 for specific agent).</li> <li>Collect solid residues and seal in labelled drums for disposal.</li> <li>Wash area and prevent runoff into drains.</li> <li>After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.</li> <li>If contamination of drains or waterways occurs, advise emergency services.</li> </ul> |

Personal Protective Equipment advice is contained in Section 8 of the SDS.

#### **SECTION 7 Handling and storage**

| Precautions for safe hand | dling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Safe handling             | <ul> <li>Avoid all personal contact, including inhalation.</li> <li>Wear protective clothing when risk of exposure occurs.</li> <li>Use in a well-ventilated area.</li> <li>Avoid contact with moisture.</li> <li>Avoid contact with incompatible materials.</li> <li>When handling, DO NOT eat, drink or smoke.</li> <li>Keep containers securely sealed when not in use.</li> <li>Avoid physical damage to containers.</li> <li>Always wash hands with soap and water after handling.</li> <li>Work clothes should be laundered separately. Launder contaminated clothing before re-use.</li> <li>Use good occupational work practice.</li> <li>Observe manufacturer's storage and handling recommendations contained within this SDS.</li> <li>Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.</li> </ul> |
| Other information         | <ul> <li>Store in original containers.</li> <li>Keep containers securely sealed.</li> <li>Store in a cool, dry, well-ventilated area.</li> <li>Store away from incompatible materials and foodstuff containers.</li> <li>Protect containers against physical damage and check regularly for leaks.</li> <li>Observe manufacturer's storage and handling recommendations contained within this SDS.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Issue Date: 23/12/2022 Print Date: 09/03/2023

- ▶ DO NOT store near acids, or oxidising agents
- ▶ No smoking, naked lights, heat or ignition sources.

#### Conditions for safe storage, including any incompatibilities

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- ▶ Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

- ► Removable head packaging;
- Cans with friction closures and
- I low pressure tubes and cartridges

may be used.

-

Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Storage incompatibility

Suitable container

Corrosive to soft metals.

- Avoid contact with copper, aluminium and their alloys.
- Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.
- Avoid reaction with oxidising agents

#### **SECTION 8 Exposure controls / personal protection**

#### **Control parameters**

#### Occupational Exposure Limits (OEL)

#### **INGREDIENT DATA**

| Source                          | Ingredient      | Material name                 | TWA           | STEL          | Peak      | Notes         |
|---------------------------------|-----------------|-------------------------------|---------------|---------------|-----------|---------------|
| Australia Exposure<br>Standards | m-xylenediamine | m-Xylene-alpha,alpha'-diamine | Not Available | Not Available | 0.1 mg/m3 | Not Available |

#### **Emergency Limits**

| Ingredient             | TEEL-1    | TEEL-2    | TEEL-3    |
|------------------------|-----------|-----------|-----------|
| p-tert-butylphenol     | 1.5 mg/m3 | 40 mg/m3  | 240 mg/m3 |
| tetraethylenepentamine | 15 mg/m3  | 130 mg/m3 | 790 mg/m3 |

| Ingredient             | Original IDLH | Revised IDLH  |
|------------------------|---------------|---------------|
| p-tert-butylphenol     | Not Available | Not Available |
| m-xylenediamine        | Not Available | Not Available |
| tetraethylenepentamine | Not Available | Not Available |
| isophorone diamine     | Not Available | Not Available |

#### **Occupational Exposure Banding**

| Ingredient         | Occupational Exposure Band Rating                              | Occupational Exposure Band Limit                                                                                                                                                                                                                                                                                                                        |  |  |
|--------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| p-tert-butylphenol | E                                                              | ≤ 0.01 mg/m³                                                                                                                                                                                                                                                                                                                                            |  |  |
| isophorone diamine | D                                                              | > 0.1 to ≤ 1 ppm                                                                                                                                                                                                                                                                                                                                        |  |  |
| Notes:             | potency and the adverse health outcomes associated with exposi | ational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's<br>y and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure<br>OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. |  |  |

#### MATERIAL DATA

#### **Exposure controls**

| Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed           |
|--------------------------------------------------------------------------------------------------------------------------------|
| engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to |
| provide this high level of protection.                                                                                         |

### Appropriate engineering controls

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Issue Date: 23/12/2022 Print Date: 09/03/2023

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

| Type of Contaminant:                                                                                                                                                                                                | Air Speed:                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| solvent, vapours, degreasing etc., evaporating from tank (in still air).                                                                                                                                            | 0.25-0.5 m/s<br>(50-100 f/min.) |
| aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s<br>(100-200 f/min.)   |
| direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)                                                      | 1-2.5 m/s<br>(200-500 f/min.)   |
| grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).                                                                | 2.5-10 m/s<br>(500-2000 f/min.) |

Within each range the appropriate value depends on:

| Lower end of the range                                     | Upper end of the range           |
|------------------------------------------------------------|----------------------------------|
| 1: Room air currents minimal or favourable to capture      | 1: Disturbing room air currents  |
| 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity |
| 3: Intermittent, low production.                           | 3: High production, heavy use    |
| 4: Large hood or large air mass in motion                  | 4: Small hood-local control only |

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment













### Eye and face protection

#### ▶ Chemical goggles.

- Full face shield may be required for supplementary but never for primary protection of eyes.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

### See Hand protection below

#### Hands/feet protection

Leather wear not recommended: Contaminated leather footwear, watch bands, should be destroyed, i.e. burnt, as they
cannot be adequately decontaminated

#### **Body protection**

Skin protection

See Other protection below

#### 011----------

- Overalls.
- ► PVC Apron.

#### Other protection

- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.

#### Recommended material(s)

#### **GLOVE SELECTION INDEX**

Glove selection is based on a modified presentation of the:

#### "Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Hychem PF3 Hardener

| Material | CPI |
|----------|-----|
|          |     |

#### Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Issue Date: **23/12/2022**Print Date: **09/03/2023** 

| I.             |   |
|----------------|---|
| BUTYL          | A |
| NEOPRENE       | A |
| VITON          | A |
| NATURAL RUBBER | С |

<sup>\*</sup> CPI - Chemwatch Performance Index

**NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

\* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

| Required<br>minimum<br>protection<br>factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face<br>Respirator | Full-Face<br>Respirator |
|---------------------------------------------|--------------------------------------------------------------------|-------------------------|-------------------------|
| up to 10                                    | 1000                                                               | AK-AUS /<br>Class1 P2   | -                       |
| up to 50                                    | 1000                                                               | -                       | AK-AUS /<br>Class 1 P2  |
| up to 50                                    | 5000                                                               | Airline *               | -                       |
| up to 100                                   | 5000                                                               | -                       | AK-2 P2                 |
| up to 100                                   | 10000                                                              | -                       | AK-3 P2                 |
| 100+                                        |                                                                    |                         | Airline**               |

<sup>\* -</sup> Continuous Flow \*\* - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

#### **SECTION 9 Physical and chemical properties**

#### Information on basic physical and chemical properties

| Appearance Grey paste; mixes with water      |                 |                                         |                |
|----------------------------------------------|-----------------|-----------------------------------------|----------------|
|                                              |                 |                                         |                |
| Physical state                               | Non Slump Paste | Relative density (Water = 1)            | 1.3            |
| Odour                                        | Not Available   | Partition coefficient n-octanol / water | Not Available  |
| Odour threshold                              | Not Available   | Auto-ignition temperature (°C)          | Not Applicable |
| pH (as supplied)                             | 11              | Decomposition temperature (°C)          | Not Available  |
| Melting point / freezing point (°C)          | Not Available   | Viscosity (cSt)                         | Not Available  |
| Initial boiling point and boiling range (°C) | Not Available   | Molecular weight (g/mol)                | Not Applicable |
| Flash point (°C)                             | Not Applicable  | Taste                                   | Not Available  |
| Evaporation rate                             | Not Available   | Explosive properties                    | Not Available  |
| Flammability                                 | Not Applicable  | Oxidising properties                    | Not Available  |
| Upper Explosive Limit (%)                    | Not Applicable  | Surface Tension (dyn/cm or mN/m)        | Not Available  |
| Lower Explosive Limit (%)                    | Not Applicable  | Volatile Component (%vol)               | Not Available  |
| Vapour pressure (kPa)                        | Not Available   | Gas group                               | Not Available  |
| Solubility in water                          | Miscible        | pH as a solution (1%)                   | Not Available  |
| Vapour density (Air = 1)                     | Not Available   | VOC g/L                                 | Not Available  |

#### **SECTION 10 Stability and reactivity**

| Reactivity                         | See section 7                                                                                                                                                    |  |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Chemical stability                 | <ul> <li>Unstable in the presence of incompatible materials.</li> <li>Product is considered stable.</li> <li>Hazardous polymerisation will not occur.</li> </ul> |  |  |
| Possibility of hazardous reactions | See section 7                                                                                                                                                    |  |  |
| Conditions to avoid                | e section 7                                                                                                                                                      |  |  |
| Incompatible materials             | See section 7                                                                                                                                                    |  |  |
| Hazardous decomposition products   | See section 5                                                                                                                                                    |  |  |

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

Issue Date: **23/12/2022**Print Date: **09/03/2023** 

#### **SECTION 11 Toxicological information**

#### Information on toxicological effects

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and

Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma". The literature records several instances of systemic intoxications following the use of amines in epoxy resin systems.

# Excessive exposure to the vapours of epoxy amine curing agents may cause both respiratory irritation and central nervous system depression. Signs and symptoms of central nervous system depression, in order of increasing exposure, are headache, dizziness, drowsiness, and incoordination. In short, a single prolonged (measured in hours) or excessive inhalation exposure may cause serious adverse effects, including death.

#### Ingestion

Inhaled

The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. Ingestion of amine epoxy-curing agents (hardeners) may cause severe abdominal pain, nausea, vomiting or diarrhoea. The vomitus may contain blood and mucous. If death does not occur within 24 hours there may be an improvement in the patients condition for 2-4 days only to be followed by the sudden onset of abdominal pain, board-like abdominal rigidity or hypo-tension; this indicates that delayed gastric or oesophageal corrosive damage has occurred.

The material can produce chemical burns following direct contact with the skin.

Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Blistering, with weeping of serious fluid, and crusting and scaling may also occur.

Virtually all of the liquid amine curing agents can cause sensitisation or allergic skin reactions.

#### **Skin Contact**

Individuals exhibiting "amine dermatitis" may experience a dramatic reaction upon re-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute quantities of air-borne amine may precipitate intense dermatological symptoms in sensitive individuals. Prolonged or repeated exposure may produce tissue necrosis.

NOTE: Susceptibility to this sensitisation will vary from person to person. Also, allergic dermatitis may not appear until after several days or weeks of contact. However, once sensitisation has occurred, exposure of the skin to even very small amounts of the material may cause erythema (redness) and oedema (swelling) at the site. Thus, all skin contact with any epoxy curing agent should be avoided.

#### Eye

The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation.

Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.

On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Limited evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a significant number of individuals at a greater frequency than would be expected from the response of a normal population.

#### Chronic

Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking. Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

There is sufficient evidence to provide a strong presumption that human exposure to the material may result in developmental toxicity, generally on the basis of:

- clear results in appropriate animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

| Hychem PF3 Hardener | TOXICITY  Not Available                         | IRRITATION  Not Available                                |  |
|---------------------|-------------------------------------------------|----------------------------------------------------------|--|
|                     | TOXICITY                                        | IRRITATION                                               |  |
|                     | Dermal (rabbit) LD50: 2288 mg/kg <sup>[2]</sup> | Eye (rabbit) 0.05 mg/24h - SEVERE                        |  |
| p-tert-butylphenol  | Oral (Rat) LD50: >2000 mg/kg <sup>[1]</sup>     | Eye (rabbit): 10 mg - SEVERE                             |  |
|                     |                                                 | Eye: adverse effect observed (irritating) <sup>[1]</sup> |  |

Page 9 of 18

Hychem PF3 Hardener

Issue Date: 23/12/2022 Print Date: 09/03/2023

|                       |                                                                                                                                                                                                                              | Skin (rabbit): 500 mg/4h - mild                           |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|
|                       |                                                                                                                                                                                                                              | Skin: adverse effect observed (irritating) <sup>[1]</sup> |  |
|                       | TOXICITY                                                                                                                                                                                                                     | IRRITATION                                                |  |
|                       | Dermal (rabbit) LD50: 2000 mg/kg <sup>[2]</sup>                                                                                                                                                                              | Eye (rabbit): 0.05 mg/24h SEVERE                          |  |
| m-xylenediamine       | Inhalation(Rat) LC50: 0.8 mg/l4h <sup>[1]</sup>                                                                                                                                                                              | Skin (rabbit): 0.75 mg/24h SEVERE                         |  |
|                       | Oral (Rat) LD50: >200 mg/kg <sup>[1]</sup>                                                                                                                                                                                   |                                                           |  |
|                       | TOXICITY                                                                                                                                                                                                                     | IRRITATION                                                |  |
|                       | Dermal (rabbit) LD50: 660 mg/kg <sup>[2]</sup>                                                                                                                                                                               | Eye (rabbit): 100 mg/24h moderate                         |  |
| etraethylenepentamine | Oral (Rat) LD50: 3990 mg/kg <sup>[2]</sup>                                                                                                                                                                                   | Eye (rabbit): 5 mg moderate                               |  |
|                       |                                                                                                                                                                                                                              | Skin (rabbit): 495 mg SEVERE                              |  |
|                       |                                                                                                                                                                                                                              | Skin (rabbit): 5 mg/24h SEVERE                            |  |
|                       | TOXICITY                                                                                                                                                                                                                     | IRRITATION                                                |  |
|                       | dermal (rat) LD50: >2000 mg/kg <sup>[1]</sup>                                                                                                                                                                                | Not Available                                             |  |
| isophorone diamine    | Inhalation(Rat) LC50: >=1.07<=5.01 mg/l4h <sup>[1]</sup>                                                                                                                                                                     |                                                           |  |
|                       | Oral (Rat) LD50: 1030 mg/kg <sup>[2]</sup>                                                                                                                                                                                   |                                                           |  |
| Legend:               | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS.     Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances |                                                           |  |

#### **Hychem PF3 Hardener**

None assigned. Refer to individual constituents.

for alkylphenolics category:

The alkylphenolics may be divided into three groups.

Group I: ortho-substituted mono-alkylphenols:

Group II para-substituted mono-alkylphenols

Group III: di- and tri-substituted mixed alkyl phenols

The subdivision of the category alkylphenols into *ortho*, *para* and the di/tri-substituted mixed members is supported by several published investigations. In assessing antimicrobial and antifouling activity of twenty-three alkylphenols, a significant difference was noted between *para* and *ortho*-substituted materials. In particular, biological activity was found to vary parabolically with increasing hydrophobicity of the *para*-substituent while introduction of a bulky substituent at the *ortho*-position resulted in a very significant decrease in antimicrobial, antifouling, and membrane-perturbation potency. Several alkylphenolic analogs of butylated hydroxytoluene (BHT) were examined for hepatotoxicity in mice depleted of hepatic glutathione. The structural requirement of both hepatic and pulmonary toxicity was a phenol ring having benzylic hydrogen atoms at the para position and an ortho-alkyl group(s) that moderately hinders the phenolic hydroxyl group. It is noteworthy that in this model, neither of the Group III members TTBP (2,4,6-tri-tert-butylphenol) nor 2,6-DTBP (2,6-di-tert-butylphenol) showed either hepatic or pulmonary toxicity. Lastly, important differences were observed in gene activation (recombinant yeast cell assay – Lac-Z reporter gene) between *ortho*-substituted and *para*-substituted alkylphenol

#### P-TERT-BUTYLPHENOL

Acute toxicity: The acute (single-dose) toxicity of alkylphenols examined to date shows consistency, with LD50 values ranging from approximately 1000 mg/kg to over 2000 mg/kg. These data demonstrate a very low level of acute systemic toxicity and do not suggest any unique structural specificity, despite the general tendency for the chemicals to be, at least, irritants to skin Repeat dose toxicity: The available studies for members drawn from the three groups range from 28-day and 90-day general toxicity studies, through developmental toxicity and reproductive/developmental screening, to multigeneration reproductive studies are available for some category members

For the overall category of alkylphenols, the dosage at which the relatively mild general toxicity appears tends only to fall below 100 mg/kg/day with extended treatment, with an overall NOAEL for the category of approximately 20 mg/kg/day. No unusual and no apparent structurally unique toxicity is evident

Repeat dose studies on OTBP (o-tert-butylphenol; Group I) and PTBP (p-tert-butylphenol; Group II) suggest the forestomach to be the main organ affected. OTBP also appears to have a mild (though statistically significant) protective effect against benzo[a]pyrene induced forestomach tumors. Long-term treatment with high dietary dose levels of PTBP caused hyperplastic changes in the forestomach epithelium of rats and hamsters, a likely consequence of the irritancy of the material. The relevance of this for human hazard is doubtful, particularly since there is no analogous structure in humans to the forestomach of rodents. There was no evidence of an effect on reproductive function at dosages up to 150 mg/kg. One reproductive screening study reported increased 'breeding loss and also reduced pup weight gain and survival in early lactation at 750 mg/kg/day. It is reasonable to assume that these effects were secondary to "severe toxic symptoms" reported in the dams at this dosage. Other than an indication of a very mildly oestrogenic effect of PNP (p-nonylphenol; Group II) at a high dose levels (200-300 mg/kg/day) no effect on development was seen in a multigeneration study.

By means of the classification method of Verhaar \* all the alkylphenols would be classified as Type 2 compounds (polar narcotics). Narcosis, a non-specific mode of toxicity is caused by disruption (perturbation) of the cell membrane. The ability to induce narcosis is dependent on the hydrophobicity of the substance with biochemical activation or reaction involved. Such narcotic effects are also referred to as minimum or base-line toxicity. Polar narcotics such as the category phenols are usually characterised by having hydrogen bond donor activity and are thought to act by a similar mechanism to the inert, narcotic compounds but exhibit above base-line toxicity. In fact, a large number of alkylphenols have been evaluated as intravenous anesthetic agents. While the structure-activity relationships were found to be complex, the anesthetic potency and kinetics

 Chemwatch: 18-9420
 Page 10 of 18
 Issue Date: 23/12/2022

 Version No: 6.1
 Print Date: 09/03/2023

#### Hychem PF3 Hardener

appeared to be a function of both the lipophilic character and the degree of steric hindrance exerted by ortho substituents. Less steric hindrance resulted in lower potency, while greater crowding led to complete loss of anesthetic activity and greater lipophilicity resulted in slower kinetics. These data support the notion that the alkylphenols behave as polar narcotics. In addition, the anaesthetic activity/potency differences seen with varying structure and placement of substituents strongly supports the division of alkylphenols category into the ortho, para, and di/tri-substituted groups (i.e. Group I, II and III, respectively).

Genotoxicity: It reasonable to consider the mutagenic potential of all the alkylphenols together because only functional group is the phenolic, which is not a structural alert for mutagenicity. The data support this, since the results of genotoxicity testing are uniformly negative for all category substances examined

\* Verhaar, H.J.M. van Leeuwen, C.J. and Hermens, J.L.M., Classifying Environmental Pollutants. 1: Structure-Activity Relationships for Prediction of Aquatic Toxicity, Chemosphere (25), pp 471 – 491 (1992).

#### For p-tert-butylphenol

Acute toxicity: Acute toxicity of p-t-butylphenol is low via any administration routes. This chemical is considered as an irritant to the skin, eyes and respiratory tract. The possibility of skin sensitisation in humans still remains because of some positive results in human patch tests, despite negative results in animal experiments (OECD TG 406). The depigmentation was observed on the skin of various animals and humans exposed to this chemical. This change was likely induced by exposure to this chemical not only via direct contact but also via inhalation or ingestion route.

Repeat dose and developmental/ reproductive toxicity In the OECD combined repeat dose and reproductive/ developmental screening toxicity test (OECD TG 422) of rats by gavage at doses of 20, 60 and 200 mg/kg/day for 46 days, this chemical showed neither systemic toxicity nor reproductive toxicity even at the highest dose of 200 mg/kg/day. Although a noisy respiratory sound was induced in a few females at 200 mg/kg/day, it was considered due to irritation of the respiratory tract caused by this chemical. In a dose-finding study (14 days), this changed to respiratory difficulty, especially at 1,000 mg/kg/day. In other studies by the longer and higher exposure in diet (approx. 1 g/kg b.w./day, for 20 or 51 weeks), forestomach hyperplasia was induced. Genotoxicity: This chemical showed clear negative results in gene mutation tests. However, one chromosomal aberration study indicated structural chromosome aberration and polyploidy with metabolic activation in CHL/IU cells (OECD TG 473) although other studies in rat lymphocytes (OECD TG 473) and in rat liver epithelial-type cells resulted in negative. Therefore, the possibility of *in vivo* genotoxicity still remains.

Carcinogenicity: There was no sufficient carcinogenicity study and no evidence of carcinogenesis in manufacturing workers, however, a two-stage carcinogenicity study indicated this chemical has promoting activity of forestomach carcinogenesis (papilloma and squamous carcinoma) in rats treated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Furthermore, since the structural related chemical, BHA, (2(3)-tert-butyl-methoxylphenol) is a clear carcinogen, a carcinogenic potential of this chemical could not be ruled out.

Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens). Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure. For benzene-1,3-dimethanamine (m-xylene-alpha,alpha'- diamine)

The toxicity via oral administration and inhalation was tissue damage in the digestive and respiratory organs, respectively, which are the first contact sites. The chemical is corrosive to rat and mouse skin and a sensitiser in the guinea pig maximisation test. In the 28-day repeated dose toxicity study [OECD TG 407], the chemical was given to rats by gavage at doses of 0, 10, 40, 150 and 600 mg/kg b.w/day. One male and four females died, and salivation, low locomotor activity and piloerection were noted in the 600 mg/kg group. Furthermore, ulceration, acanthosis with hyperkeratosis and submucosal inflammation were observed in the forestomach. No adverse effects were observed in the 150 mg/kg and the lower dose groups.

A reproductive /developmental toxicity screening test [OECD TG 421] of rats by gavage at 50, 150 and 450 mg/kg b.w/day for at least 41 days resulted in death in one male in the 150 mg/kg group, and three males and one female in the 450 mg/kg group. In almost all 450 mg/kg animals, the same histopathological changes as the above 28-day study were observed in the forestomach. No adverse effects were found at 50 mg/kg b.w/day. Based on this information, the NOAEL for repeated dose toxicity is considered to be 50 mg/kg b.w/day.

In the above reproductive/developmental toxicity screening test [OECD TG 421] the substance was administered from 14 days before mating to 20 days after mating in males and to day 3 of lactation in females. No adverse effects were observed in terms of copulation, fertility, delivery and nursing of parents, and the viability, body weight and morphology of offspring. The NOAEL for reproductive/developmental toxicity (F1 offspring) was 450 mg/kg b.w/day.

The chemical was not mutagenic in bacteria [OECD TG 471 & 472]. It induced neither chromosomal aberrations in mammalian cells *in vitro* [OECD TG 473] nor micronuclei in mouse bone marrow *in vivo* [OECD TG 474].

In clinical observation of workers during the manufacturing process, the chemical appears to act as a gastrointestinal irritant. It has also been shown to cause contact sensitisation reactions in workers at concentrations equal to and below 0.1 mg/m3

While it is difficult to generalise about the full range of potential health effects posed by exposure to the many different amine compounds, characterised by those used in the manufacture of polyurethane and polyisocyanurate foams, it is agreed that overexposure to the majority of these materials may cause adverse health effects.

- Many amine-based compounds can induce histamine liberation, which, in turn, can trigger allergic and other physiological effects, including bronchoconstriction or bronchial asthma and rhinitis.
- Systemic symptoms include headache, nausea, faintness, anxiety, a decrease in blood pressure, tachycardia (rapid heartbeat), itching, erythema (reddening of the skin), urticaria (hives), and facial edema (swelling). Systemic effects (those affecting the body) that are related to the pharmacological action of amines are usually transient.

Typically, there are four routes of possible or potential exposure: inhalation, skin contact, eye contact, and ingestion.

#### M-XYLENEDIAMINE

## Page 11 of 18 Hychem PF3 Hardener

Issue Date: **23/12/2022**Print Date: **09/03/2023** 

#### Inhalation:

Inhalation of vapors may, depending upon the physical and chemical properties of the specific product and the degree and length of exposure, result in moderate to severe irritation of the tissues of the nose and throat and can irritate the lungs.

Products with higher vapour pressures have a greater potential for higher airborne concentrations. This increases the probability of worker exposure.

Higher concentrations of certain amines can produce severe respiratory irritation, characterised by nasal discharge, coughing, difficulty in breathing, and chest pains.

Chronic exposure via inhalation may cause headache, nausea, vomiting, drowsiness, sore throat, bronchopneumonia, and possible lung damage. Also, repeated and/or prolonged exposure to some amines may result in liver disorders, jaundice, and liver enlargement. Some amines have been shown to cause kidney, blood, and central nervous system disorders in laboratory animal studies.

While most polyurethane amine catalysts are not sensitisers, some certain individuals may also become sensitized to amines and may experience respiratory distress, including asthma-like attacks, whenever they are subsequently exposed to even very small amounts of vapor. Once sensitised, these individuals must avoid any further exposure to amines. Although chronic or repeated inhalation of vapor concentrations below hazardous or recommended exposure limits should not ordinarily affect healthy individuals, chronic overexposure may lead to permanent pulmonary injury, including a reduction in lung function, breathlessness, chronic bronchitis, and immunologic lung disease.

Inhalation hazards are increased when exposure to amine catalysts occurs in situations that produce aerosols, mists, or heated vapors. Such situations include leaks in fitting or transfer lines. Medical conditions generally aggravated by inhalation exposure include asthma, bronchitis, and emphysema.

#### **Skin Contact:**

Skin contact with amine catalysts poses a number of concerns. Direct skin contact can cause moderate to severe irritation and injury-i.e., from simple redness and swelling to painful blistering, ulceration, and chemical burns. Repeated or prolonged exposure may also result in severe cumulative dermatitis.

Skin contact with some amines may result in allergic sensitisation. Sensitised persons should avoid all contact with amine catalysts. Systemic effects resulting from the absorption of the amines through skin exposure may include headaches, nausea, faintness, anxiety, decrease in blood pressure, reddening of the skin, hives, and facial swelling. These symptoms may be related to the pharmacological action of the amines, and they are usually transient.

#### **Eve Contact:**

Amine catalysts are alkaline in nature and their vapours are irritating to the eyes, even at low concentrations.

Direct contact with the liquid amine may cause severe irritation and tissue injury, and the "burning" may lead to blindness. (Contact with solid products may result in mechanical irritation, pain, and corneal injury.)

Exposed persons may experience excessive tearing, burning, conjunctivitis, and corneal swelling.

The corneal swelling may manifest itself in visual disturbances such as blurred or "foggy" vision with a blue tint ("blue haze") and sometimes a halo phenomenon around lights. These symptoms are transient and usually disappear when exposure ceases. Some individuals may experience this effect even when exposed to concentrations below doses that ordinarily cause respiratory irritation.

#### Ingestion:

The oral toxicity of amine catalysts varies from moderately to very toxic.

Some amines can cause severe irritation, ulceration, or burns of the mouth, throat, esophagus, and gastrointestinal tract. Material aspirated (due to vomiting) can damage the bronchial tubes and the lungs.

Affected persons also may experience pain in the chest or abdomen, nausea, bleeding of the throat and the gastrointestinal tract, diarrhea, dizziness, drowsiness, thirst, circulatory collapse, coma, and even death.

Polyurethane Amine Catalysts: Guidelines for Safe Handling and Disposal; Technical Bulletin June 2000 Alliance for Polyurethanes Industry

Handling ethyleneamine products is complicated by their tendency to react with other chemicals, such as carbon dioxide in the air, which results in the formation of solid carbamates. Because of their ability to produce chemical burns, skin rashes, and asthma-like symptoms, ethyleneamines also require substantial care in handling. Higher molecular weight ethyleneamines are often handled at elevated temperatures further increasing the possibility of vapor exposure to these compounds.

Because of the fragility of eye tissue, almost any eye contact with any ethyleneamine may cause irreparable damage, even blindness. A single, short exposure to ethyleneamines, may cause severe skin burns, while a single, prolonged exposure may result in the material being absorbed through the skin in harmful amounts. Exposures have caused allergic skin reactions in some individuals. Single dose oral toxicity of ethyleneamines is low. The oral LD50 for rats is in the range of 1000 to 4500 mg/kg for the ethyleneamines.

In general, the low-molecular weight polyamines have been positive in the Ames assay, increase sister chromatid exchange in Chinese hamster ovary (CHO) cells, and are positive for unscheduled DNA synthesis although they are negative in the mouse micronucleus assay. It is believed that the positive results are based on its ability to chelate copper

#### tetraethylenepentamine

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

#### For alkyl polyamines:

The alkyl polyamines cluster consists of organic compounds containing two terminal primary amine groups and at least one secondary amine group. Typically these substances are derivatives of ethylenediamine, propylenediamine or hexanediamine. The molecular weight range for the entire cluster is relatively narrow, ranging from 103 to 232

Acute toxicity of the alkyl polyamines cluster is low to moderate via oral exposure and a moderate to high via dermal exposure. Cluster members have been shown to be eye irritants, skin irritants, and skin sensitisers in experimental animals. Repeated exposure in rats via the oral route indicates a range of toxicity from low to high hazard. Most cluster members gave positive results in tests for potential genotoxicity.

Limited carcinogenicity studies on several members of the cluster showed no evidence of carcinogenicity. Unlike aromatic amines, aliphatic amines are not expected to be potential carcinogens because they are not expected to undergo metabolic activation, nor would activated intermediates be stable enough to reach target macromolecules.

Polyamines potentiate NMDA induced whole-cell currents in cultured striatal neurons

## Page 12 of 18 Hychem PF3 Hardener

Issue Date: 23/12/2022 Print Date: 09/03/2023

Triethylenetetramine (TETA) is a severe irritant to skin and eyes and induces skin sensitisation.

TETA is of moderate acute toxicity: LD50(oral, rat) > 2000 mg/kg bw, LD50(dermal, rabbit) = 550 - 805 mg/kg bw. Acute exposure to saturated vapour via inhalation was tolerated without impairment. Exposure to to aerosol leads to reversible irritations of the mucous membranes in the respiratory tract.

Following repeated oral dosing via drinking water only in mice but not in rats at concentration of 3000 ppm there were signs of impairment. The NOAEL is 600 ppm [92 mg/kg bw (oral, 90 days)]. Lifelong dermal application to mice (1.2 mg/mouse) did not result in tumour formation.

There are differing results of the genetic toxicity for TETA. The positive results of the in vitro tests may be the result of a direct genetic action as well as a result of an interference with essential metal ions. Due to this uncertainty of the in vitro tests, the genetic toxicity of TETA has to be assessed on the basis of in vivo tests.

The in vivo micronucleus tests (i.p. and oral) and the SLRL test showed negative results.

There are no human data on reproductive toxicity (fertility assessment). The analogue diethylenetriamine had no effects on reproduction. TETA shows developmental toxicity in animal studies if the chelating property of the substance is effective. The NOEL is 830 mg/kg bw (oral).

Experience with female patients suffering from Wilson's disease demonstrated that no miscarriages and no foetal abnormalities occur during treatment with TETA..

In rats, there are several studies concerning developmental toxicity. The oral treatment of rats with 75, 375 and 750 mg/kg resulted in no effects on dams and fetuses, except slight increased fetal body weight. After oral treatment of rats with 830 or 1670 mg/kg bw only in the highest dose group increased foetal abnormalities in 27/44 fetus (69,2 %) were recorded, when simultaneously the copper content of the feed was reduced. Copper supplementation in the feed reduced significant the fetal abnormalities of the highest dose group to 3/51 (6,5 % foetus. These findings suggest that the developmental toxicity is produced as a secondary consequence of the chelating properties of TETA.

Tetraethylenepentamine (TEPA) has a low acute toxicity when administered orally to rats (LD50 =3250 mg/kg). In an acute inhalation toxicity study with saturated vapor and whole body exposure, the LC50 was calculated to be >9.9 ppm (highest dose tested). TEPA is corrosive to the skin and eyes of rabbits. TEPA is a skin sensitiser in the guinea pig. Dermal acute toxicity LD50 values in the rabbit range from 660 - 1260 mg/kg. The higher toxicity via the dermal route is most likely due to the corrosive nature of TEPA to the skin whereas TEPA would be neutralized by stomach acid.

The results of a 28-day repeated dose dermal toxicity study of TEPA indicated a systemic toxicity NOEL of 200 mg/kg/day and a dermal toxicity NOEL (local) of 50 mg/kg/day. The dermal LOAEL was 100 mg/kg/day. In addition, in a repeat dose study of TETA administered in drinking water to male and female rats for 90-92 days, the NOEL was 276 mg/kg/day in males and 352 mg/kg/day in females, the highest dose administered with the NIH-31 diet (several diets were used to study the effects of copper deficiency versus toxicity directly to TEPA). In this same study in mice the NOEL was 487 mg/kg/day in males and 551 mg/kg/day in females, the highest dose administered. A lifetime study was conducted via dermal administration in fifty male mice with a solution of 35% TEPA. There were 20 cases of hyperkeratosis, 13 cases of epidermal necrosis and no evidence of dermal hyperplasia.

There were no data available for TEPA for reproductive and developmental toxicity. As a result, data on triethylenetetramine (TETA) was used to address these endpoints. TETA data showed no effects on reproductive organs in rats up to 276 mg/kg/day (males) and 352 mg/kg/day (females) and in mice (up to 500 mg/kg/day) when administered in drinking water. TETA was not considered a developmental toxicant via dermal administration in rabbits at maternally toxic doses up to 125 mg/kg/day but showed developmental toxicity in rats at maternally toxic doses of 830 or 1660 mg/kg/day via drinking water. The maternal and foetal toxicity was most likely due to copper deficiency and zinc toxicity at these levels. Subsequent studies where the diet was supplemented with copper resulted in a decrease of foetal abnormalities. There were no standard fertility studies available. However, there were no effects on the gonads observed in a 90-day drinking water study in rats and mice as described above. In the Ames Salmonella assay, TEPA was found to be positive both with and without metabolic activation. TEPA was found to increase sister chromatid exchange in CHO cells and was considered positive in a UDS assay using rat hepatocytes. TEPA was not considered genotoxic in the mouse micronucleus assay and had equivocal results in the two dominant lethal assays in Drosophila melanogaster. Again, it is believed that the positive results are based upon TEPA's ability to chelate copper.

#### For isophorone diamine

Based on a limited skin irritation study with rabbits and rats, isophorone diamine is deemed to be a strong irritant (duration of the exposure not reported) and corrosive after repeated application. Isophorone diamine is corrosive to the eyes of rabbits when tested according to OECD TG 405. Isophorone diamine was found to induce dermal sensitisation when tested according to OECD TG 406 in guinea pigs. From a number of publications there is evidence that frequent occupational exposure to isophorone diamine may lead to the development of allergic contact dermatitis in humans. No definite conclusion can be currently drawn on respiratory sensitisation.

From two 14-day inhalative exposure studies with rats no NOAEL could be determined. At the first study s LOAEL of 18 mg/m3, degeneration/necrosis in the olfactory epithelium of the nose were observed. Trachea, larynx and lungs were affected at 200 mg/m3 and above (degeneration/necrosis, hyperplasia, squamous metaplasia). At the LOAEL of the follow-up study, i.e. at 2.2 mg/m3, reversible minimal to mild degeneration of respiratory nasal mucosa in the anterior dorsal nose was observed. In a subchronic drinking water study according to OECD TG 408, the administration of 150 mg/kg bw/day led to reduced absolute and relative kidney weights in male and female rats (histopathology being indicative for tubular nephrosis), while 59 mg/kg bw/day (males) and 62 mg/kg bw/day (females) were determined as a NOAEL.

Isophorone diamine was not mutagenic in bacteria and mammalian cell systems *in vitro* (Ames test according to Directive 84/449/EEC B.14 (1984) and HPRT test according to OECD TG 476 (1984)). It did not induce chromosomal aberrations in CHO cells *in vitro* in a test performed in accordance with OECD TG 473. *In vivo* mouse micronucleus tests (one performed according to OECD TG 474 (1983) for the induction of micronucleated polychromatic erythrocytes were clearly negative. From all *in vitro* and *in vivo* tests performed there is no evidence that isophorone diamine has a mutagenic or clastogenic potential.

No studies have been performed on the toxicity of isophorone diamine to reproduction.

Data from an oral 90-day study in rats according to OECD TG 408 did not reveal any adverse effects on the male and female reproductive organs.

Isophorone diamine did not show any teratogenic or embryofoetotoxic effects in a gavage study with rats performed in accordance with OECD TG 414 (2001) up to and including the highest tested dose level of 250 mg/kg bw/day. The NOAEL for maternal toxicity was 50 mg/kg bw/day, effects at 250 mg/kg bw/day were reduced food consumption and reduced body weight

#### **ISOPHORONE DIAMINE**

Issue Date: **23/12/2022**Print Date: **09/03/2023** 

gain. The NOAEL for developmental toxicity is 250 mg/kg bw/day.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce respiratory tract irritation. Symptoms of pulmonary irritation may include coughing, wheezing, larvngitis, shortness of breath, headache, nausea, and a burning sensation.

Unlike most organs, the lung can respond to a chemical insult or a chemical agent, by first removing or neutralising the irritant and then repairing the damage (inflammation of the lungs may be a consequence).

The repair process (which initially developed to protect mammalian lungs from foreign matter and antigens) may, however, cause further damage to the lungs (fibrosis for example) when activated by hazardous chemicals. Often, this results in an impairment of gas exchange, the primary function of the lungs. Therefore prolonged exposure to respiratory irritants may cause sustained breathing difficulties.

### P-TERT-BUTYLPHENOL & M-XYLENEDIAMINE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

### P-TERT-BUTYLPHENOL & ISOPHORONE DIAMINE

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

# P-TERT-BUTYLPHENOL & M-XYLENEDIAMINE & tetraethylenepentamine & ISOPHORONE DIAMINE

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

## M-XYLENEDIAMINE & tetraethylenepentamine & ISOPHORONE DIAMINE

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

## M-XYLENEDIAMINE & tetraethylenepentamine

The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration.

| Acute Toxicity                    | ×        | Carcinogenicity          | ×        |
|-----------------------------------|----------|--------------------------|----------|
| Skin Irritation/Corrosion         | <b>✓</b> | Reproductivity           | <b>✓</b> |
| Serious Eye<br>Damage/Irritation  | <b>✓</b> | STOT - Single Exposure   | ×        |
| Respiratory or Skin sensitisation | <b>✓</b> | STOT - Repeated Exposure | ×        |
| Mutagenicity                      | ×        | Aspiration Hazard        | ×        |

Leaend:

- 🗶 Data either not available or does not fill the criteria for classification
- ✓ Data available to make classification

#### **SECTION 12 Ecological information**

#### **Toxicity**

|                     | Endpoint         | Test Duration (hr) | Species                       | Value            | Source           |
|---------------------|------------------|--------------------|-------------------------------|------------------|------------------|
| Hychem PF3 Hardener | Not<br>Available | Not Available      | Not Available                 | Not<br>Available | Not<br>Available |
|                     | Endpoint         | Test Duration (hr) | Species                       | Value            | Source           |
|                     | NOEC(ECx)        | Not Reportedh      | Crustacea                     | 0.01mg/l         | 4                |
| p-tert-butylphenol  | EC50             | 72h                | Algae or other aquatic plants | ~2.4mg/l         | 2                |
|                     | LC50             | 96h                | Fish                          | >1mg/l           | 2                |

Page 14 of 18

#### **Hychem PF3 Hardener**

Issue Date: 23/12/2022 Print Date: 09/03/2023

|                        | EC50                                                                                                                                                                                                                                                                                                                          | 48h                | Crustacea                     | 3.4-4.5mg/l   | 4      |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------|---------------|--------|
|                        | Endpoint                                                                                                                                                                                                                                                                                                                      | Test Duration (hr) | Species                       | Value         | Source |
|                        | BCF                                                                                                                                                                                                                                                                                                                           | 1008h              | Fish                          | <0.3          | 7      |
|                        | LC50                                                                                                                                                                                                                                                                                                                          | 96h                | Fish                          | 75mg/l        | 2      |
| m-xylenediamine        | EC50                                                                                                                                                                                                                                                                                                                          | 72h                | Algae or other aquatic plants | 12mg/l        | 2      |
|                        | EC50                                                                                                                                                                                                                                                                                                                          | 48h                | Crustacea                     | 15.2mg/l      | 2      |
|                        | NOEC(ECx)                                                                                                                                                                                                                                                                                                                     | 504h               | Crustacea                     | 4.7mg/l       | 2      |
|                        | Endpoint                                                                                                                                                                                                                                                                                                                      | Test Duration (hr) | Species                       | Value         | Source |
|                        | EC50                                                                                                                                                                                                                                                                                                                          | 72h                | Algae or other aquatic plants | 2.1mg/l       | 1      |
| tetraethylenepentamine | EC50                                                                                                                                                                                                                                                                                                                          | 48h                | Crustacea                     | 24.1mg/l      | 1      |
|                        | NOEC(ECx)                                                                                                                                                                                                                                                                                                                     | 72h                | Algae or other aquatic plants | 0.5mg/l       | 1      |
|                        | Endpoint                                                                                                                                                                                                                                                                                                                      | Test Duration (hr) | Species                       | Value         | Source |
|                        | BCF                                                                                                                                                                                                                                                                                                                           | 1008h              | Fish                          | <0.3          | 7      |
|                        | NOEC(ECx)                                                                                                                                                                                                                                                                                                                     | 72h                | Algae or other aquatic plants | 1.5mg/l       | 1      |
| isophorone diamine     | EC50                                                                                                                                                                                                                                                                                                                          | 72h                | Algae or other aquatic plants | 37mg/l        | 1      |
|                        | LC50                                                                                                                                                                                                                                                                                                                          | 96h                | Fish                          | 70mg/l        | 1      |
|                        | EC50                                                                                                                                                                                                                                                                                                                          | 48h                | Crustacea                     | 14.6-21.5mg/l | 4      |
| Legend:                | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicit<br>4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) -<br>Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data |                    |                               | tic Toxicity  |        |

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

DO NOT discharge into sewer or waterways.

#### Persistence and degradability

| Ingredient             | Persistence: Water/Soil | Persistence: Air |
|------------------------|-------------------------|------------------|
| p-tert-butylphenol     | HIGH                    | HIGH             |
| m-xylenediamine        | HIGH                    | HIGH             |
| tetraethylenepentamine | LOW                     | LOW              |
| isophorone diamine     | HIGH                    | HIGH             |

#### **Bioaccumulative potential**

| Ingredient             | Bioaccumulation        |
|------------------------|------------------------|
| p-tert-butylphenol     | LOW (BCF = 240)        |
| m-xylenediamine        | LOW (BCF = 2.7)        |
| tetraethylenepentamine | LOW (LogKOW = -3.1604) |
| isophorone diamine     | LOW (BCF = 3.4)        |

#### Mobility in soil

| Ingredient             | Mobility          |
|------------------------|-------------------|
| p-tert-butylphenol     | LOW (KOC = 1912)  |
| m-xylenediamine        | LOW (KOC = 914.6) |
| tetraethylenepentamine | LOW (KOC = 1098)  |
| isophorone diamine     | LOW (KOC = 340.4) |

#### **SECTION 13 Disposal considerations**

#### Waste treatment methods

Product / Packaging disposal

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.

Issue Date: **23/12/2022**Print Date: **09/03/2023** 

- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- ► Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Treat and neutralise at an approved treatment plant. Treatment should involve: Mixing or slurrying in water; Neutralisation followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

#### **SECTION 14 Transport information**

#### **Labels Required**



**Marine Pollutant** 



**HAZCHEM** 

2X

#### Land transport (ADG)

| UN number or ID number       | 2735                                | 2735                                                                                                                                                 |  |  |
|------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| UN proper shipping name      |                                     | AMINES, LIQUID, CORROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S. (contains isophorone diamine, tetraethylenepentamine and m-xylenediamine) |  |  |
| Transport hazard class(es)   | Class 8 Subsidiary risk N           | 8<br>Not Applicable                                                                                                                                  |  |  |
| Packing group                | III                                 |                                                                                                                                                      |  |  |
| Environmental hazard         | Environmentally haza                | ardous                                                                                                                                               |  |  |
| Special precautions for user | Special provisions Limited quantity | 223 274<br>5 L                                                                                                                                       |  |  |
|                              |                                     |                                                                                                                                                      |  |  |

#### Air transport (ICAO-IATA / DGR)

| UN number                    | 2735                                                                                                                                                                                                                             |                            |         |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|--|--|
| UN proper shipping name      | Polyamines, liquid, corrosive, n.o.s. * (contains isophorone diamine, tetraethylenepentamine and m-xylenediamine); Amines, liquid, corrosive, n.o.s. * (contains isophorone diamine, tetraethylenepentamine and m-xylenediamine) |                            |         |  |  |
|                              | ICAO/IATA Class                                                                                                                                                                                                                  | 8                          |         |  |  |
| Transport hazard class(es)   | ICAO / IATA Subrisk                                                                                                                                                                                                              | Not Applicable             |         |  |  |
|                              | ERG Code                                                                                                                                                                                                                         | 8L                         |         |  |  |
| Packing group                | III                                                                                                                                                                                                                              | III                        |         |  |  |
| Environmental hazard         | Environmentally hazardous                                                                                                                                                                                                        |                            |         |  |  |
|                              | Special provisions                                                                                                                                                                                                               |                            | A3 A803 |  |  |
|                              | Cargo Only Packing Instructions                                                                                                                                                                                                  |                            | 856     |  |  |
|                              | Cargo Only Maximum Qty / Pack                                                                                                                                                                                                    |                            | 60 L    |  |  |
| Special precautions for user | Passenger and Cargo Packing Instructions                                                                                                                                                                                         |                            | 852     |  |  |
|                              | Passenger and Cargo Maximum Qty / Pack                                                                                                                                                                                           |                            | 5 L     |  |  |
|                              | Passenger and Cargo Limited Quantity Packing Instructions                                                                                                                                                                        |                            | Y841    |  |  |
|                              | Passenger and Cargo                                                                                                                                                                                                              | Limited Maximum Qty / Pack | 1 L     |  |  |

#### Sea transport (IMDG-Code / GGVSee)

UN number

2735

Issue Date: 23/12/2022 Print Date: 09/03/2023

| UN proper shipping name      | AMINES, LIQUID, CORROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S. (contains isophorone diamine, tetraethylenepentamine and m-xylenediamine) |                |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Transport hazard class(es)   |                                                                                                                                                      | Not Applicable |  |
| Packing group                | III                                                                                                                                                  |                |  |
| Environmental hazard         | Marine Pollutant                                                                                                                                     |                |  |
| Special precautions for user | EMS Number  Special provisions  Limited Quantities                                                                                                   |                |  |

#### Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

#### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

| Product name           | Group         |
|------------------------|---------------|
| p-tert-butylphenol     | Not Available |
| m-xylenediamine        | Not Available |
| tetraethylenepentamine | Not Available |
| isophorone diamine     | Not Available |

#### Transport in bulk in accordance with the IGC Code

| Product name           | Ship Type     |
|------------------------|---------------|
| p-tert-butylphenol     | Not Available |
| m-xylenediamine        | Not Available |
| tetraethylenepentamine | Not Available |
| isophorone diamine     | Not Available |

#### **SECTION 15 Regulatory information**

#### Safety, health and environmental regulations / legislation specific for the substance or mixture

#### p-tert-butylphenol is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

#### m-xylenediamine is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

#### tetraethylenepentamine is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Australian Inventory of Industrial Chemicals (AIIC)

#### isophorone diamine is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Australian Inventory of Industrial Chemicals (AIIC)

### **National Inventory Status**

| National Inventory                                 | Status |
|----------------------------------------------------|--------|
| Australia - AIIC / Australia<br>Non-Industrial Use | Yes    |
| Canada - DSL                                       | Yes    |

Issue Date: **23/12/2022**Print Date: **09/03/2023** 

| National Inventory               | Status                                                                                                                                                                                         |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Canada - NDSL                    | No (p-tert-butylphenol; m-xylenediamine)                                                                                                                                                       |  |  |
| China - IECSC                    | Yes                                                                                                                                                                                            |  |  |
| Europe - EINEC / ELINCS /<br>NLP | Yes                                                                                                                                                                                            |  |  |
| Japan - ENCS                     | Yes                                                                                                                                                                                            |  |  |
| Korea - KECI                     | Yes                                                                                                                                                                                            |  |  |
| New Zealand - NZIoC              | Yes                                                                                                                                                                                            |  |  |
| Philippines - PICCS              | Yes                                                                                                                                                                                            |  |  |
| USA - TSCA                       | Yes                                                                                                                                                                                            |  |  |
| Taiwan - TCSI                    | Yes                                                                                                                                                                                            |  |  |
| Mexico - INSQ                    | Yes                                                                                                                                                                                            |  |  |
| Vietnam - NCI                    | Yes                                                                                                                                                                                            |  |  |
| Russia - FBEPH                   | Yes                                                                                                                                                                                            |  |  |
| Legend:                          | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. |  |  |

#### **SECTION 16 Other information**

| Revision Date | 23/12/2022 |
|---------------|------------|
| Initial Date  | 26/03/2009 |

#### **SDS Version Summary**

| Version | Date of Update | Sections Updated                                                               |
|---------|----------------|--------------------------------------------------------------------------------|
| 5.1     | 01/11/2019     | One-off system update. NOTE: This may or may not change the GHS classification |
| 6.1     | 23/12/2022     | Classification review due to GHS Revision change.                              |

#### Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

#### **Definitions and abbreviations**

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard
OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors

BEI: Biological Exposure Index
AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

 Chemwatch: 18-9420
 Page 18 of 18
 Issue Date: 23/12/2022

 Version No: 6.1
 Hychem PF3 Hardener
 Print Date: 09/03/2023

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act
TCSI: Taiwan Chemical Substance Inventory
INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.